Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529759

RESUMO

FungiDB (https://fungidb.org) serves as a valuable online resource that seamlessly integrates genomic and related large-scale data for a wide range of fungal and oomycete species. As an integral part of the VEuPathDB Bioinformatics Resource Center (https://veupathdb.org), FungiDB continually integrates both published and unpublished data addressing various aspects of fungal biology. Established in early 2011, the database has evolved to support 674 datasets. The datasets include over 300 genomes spanning various taxa (e.g. Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Mucoromycota, as well as Albuginales, Peronosporales, Pythiales, and Saprolegniales). In addition to genomic assemblies and annotation, over 300 extra datasets encompassing diverse information, such as expression and variation data, are also available. The resource also provides an intuitive web-based interface, facilitating comprehensive approaches to data mining and visualization. Users can test their hypotheses and navigate through omics-scale datasets using a built-in search strategy system. Moreover, FungiDB offers capabilities for private data analysis via the integrated VEuPathDB Galaxy platform. FungiDB also permits genome improvements by capturing expert knowledge through the User Comments system and the Apollo genome annotation editor for structural and functional gene curation. FungiDB facilitates data exploration and analysis and contributes to advancing research efforts by capturing expert knowledge for fungal and oomycete species.

2.
Nucleic Acids Res ; 52(D1): D808-D816, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953350

RESUMO

The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) is a Bioinformatics Resource Center funded by the National Institutes of Health with additional funding from the Wellcome Trust. VEuPathDB supports >600 organisms that comprise invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Since 2004, VEuPathDB has analyzed omics data from the public domain using contemporary bioinformatic workflows, including orthology predictions via OrthoMCL, and integrated the analysis results with analysis tools, visualizations, and advanced search capabilities. The unique data mining platform coupled with >3000 pre-analyzed data sets facilitates the exploration of pertinent omics data in support of hypothesis driven research. Comparisons are easily made across data sets, data types and organisms. A Galaxy workspace offers the opportunity for the analysis of private large-scale datasets and for porting to VEuPathDB for comparisons with integrated data. The MapVEu tool provides a platform for exploration of spatially resolved data such as vector surveillance and insecticide resistance monitoring. To address the growing body of omics data and advances in laboratory techniques, VEuPathDB has added several new data types, searches and features, improved the Galaxy workspace environment, redesigned the MapVEu interface and updated the infrastructure to accommodate these changes.


Assuntos
Biologia Computacional , Eucariotos , Animais , Biologia Computacional/métodos , Invertebrados , Bases de Dados Factuais
3.
Microbiome ; 11(1): 72, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032329

RESUMO

BACKGROUND: Eukaryotes such as fungi and protists frequently accompany bacteria and archaea in microbial communities. Unfortunately, their presence is difficult to study with "shotgun" metagenomic sequencing since prokaryotic signals dominate in most environments. Recent methods for eukaryotic detection use eukaryote-specific marker genes, but they do not incorporate strategies to handle the presence of eukaryotes that are not represented in the reference marker gene set, and they are not compatible with web-based tools for downstream analysis. RESULTS: Here, we present CORRAL (for Clustering Of Related Reference ALignments), a tool for the identification of eukaryotes in shotgun metagenomic data based on alignments to eukaryote-specific marker genes and Markov clustering. Using a combination of simulated datasets, mock community standards, and large publicly available human microbiome studies, we demonstrate that our method is not only sensitive and accurate but is also capable of inferring the presence of eukaryotes not included in the marker gene reference, such as novel strains. Finally, we deploy CORRAL on our MicrobiomeDB.org resource, producing an atlas of eukaryotes present in various environments of the human body and linking their presence to study covariates. CONCLUSIONS: CORRAL allows eukaryotic detection to be automated and carried out at scale. Implementation of CORRAL in MicrobiomeDB.org creates a running atlas of microbial eukaryotes in metagenomic studies. Since our approach is independent of the reference used, it may be applicable to other contexts where shotgun metagenomic reads are matched against redundant but non-exhaustive databases, such as the identification of bacterial virulence genes or taxonomic classification of viral reads. Video Abstract.


Assuntos
Metagenoma , Microbiota , Humanos , Metagenoma/genética , Eucariotos/genética , Microbiota/genética , Bactérias/genética , Archaea/genética , Metagenômica/métodos
4.
Bioinformatics ; 39(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36864613

RESUMO

SUMMARY: Annotation of nonmodel organisms is an open problem, especially the detection of untranslated regions (UTRs). Correct annotation of UTRs is crucial in transcriptomic analysis to accurately capture the expression of each gene yet is mostly overlooked in annotation pipelines. Here we present peaks2utr, an easy-to-use Python command line tool that uses the UTR enrichment of single-cell technologies, such as 10× Chromium, to accurately annotate 3' UTRs for a given canonical annotation. AVAILABILITY AND IMPLEMENTATION: peaks2utr is implemented in Python 3 (≥3.8). It is available via PyPI at https://pypi.org/project/peaks2utr and GitHub at https://github.com/haessar/peaks2utr. It is licensed under GNU GPLv3.


Assuntos
Perfilação da Expressão Gênica , Software , Regiões 3' não Traduzidas
5.
PLoS Negl Trop Dis ; 17(1): e0011058, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656904

RESUMO

Parasitic diseases caused by kinetoplastid parasites are a burden to public health throughout tropical and subtropical regions of the world. TriTrypDB (https://tritrypdb.org) is a free online resource for data mining of genomic and functional data from these kinetoplastid parasites and is part of the VEuPathDB Bioinformatics Resource Center (https://veupathdb.org). As of release 59, TriTrypDB hosts 83 kinetoplastid genomes, nine of which, including Trypanosoma brucei brucei TREU927, Trypanosoma cruzi CL Brener and Leishmania major Friedlin, undergo manual curation by integrating information from scientific publications, high-throughput assays and user submitted comments. TriTrypDB also integrates transcriptomic, proteomic, epigenomic, population-level and isolate data, functional information from genome-wide RNAi knock-down and fluorescent tagging, and results from automated bioinformatics analysis pipelines. TriTrypDB offers a user-friendly web interface embedded with a genome browser, search strategy system and bioinformatics tools to support custom in silico experiments that leverage integrated data. A Galaxy workspace enables users to analyze their private data (e.g., RNA-sequencing, variant calling, etc.) and explore their results privately in the context of publicly available information in the database. The recent addition of an annotation platform based on Apollo enables users to provide both functional and structural changes that will appear as 'community annotations' immediately and, pending curatorial review, will be integrated into the official genome annotation.


Assuntos
Kinetoplastida , Software , Interface Usuário-Computador , Proteômica , Genômica/métodos , Biologia Computacional/métodos , Bases de Dados Genéticas , Internet
6.
PLoS Comput Biol ; 18(1): e1009705, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051174

RESUMO

Over the last few decades, the nature of life sciences research has changed enormously, generating a need for a workforce with a variety of computational skills such as those required to store, manage, and analyse the large biological datasets produced by next-generation sequencing. Those with such expertise are increasingly in demand for employment in both research and industry. Despite this, bioinformatics education has failed to keep pace with advances in research. At secondary school level, computing is often taught in isolation from other sciences, and its importance in biological research is not fully realised, leaving pupils unprepared for the computational component of Higher Education and, subsequently, research in the life sciences. The 4273pi Bioinformatics at School project (https://4273pi.org) aims to address this issue by designing and delivering curriculum-linked, hands-on bioinformatics workshops for secondary school biology pupils, with an emphasis on equitable access. So far, we have reached over 180 schools across Scotland through visits or teacher events, and our open education resources are used internationally. Here, we describe our project, our aims and motivations, and the practical lessons we have learned from implementing a successful bioinformatics education project over the last 5 years.


Assuntos
Biologia Computacional , Adolescente , Escolha da Profissão , Biologia Computacional/educação , Biologia Computacional/organização & administração , Feminino , Humanos , Masculino , Instituições Acadêmicas , Escócia , Estudantes
7.
Nucleic Acids Res ; 50(D1): D898-D911, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718728

RESUMO

The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) represents the 2019 merger of VectorBase with the EuPathDB projects. As a Bioinformatics Resource Center funded by the National Institutes of Health, with additional support from the Welllcome Trust, VEuPathDB supports >500 organisms comprising invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Designed to empower researchers with access to Omics data and bioinformatic analyses, VEuPathDB projects integrate >1700 pre-analysed datasets (and associated metadata) with advanced search capabilities, visualizations, and analysis tools in a graphic interface. Diverse data types are analysed with standardized workflows including an in-house OrthoMCL algorithm for predicting orthology. Comparisons are easily made across datasets, data types and organisms in this unique data mining platform. A new site-wide search facilitates access for both experienced and novice users. Upgraded infrastructure and workflows support numerous updates to the web interface, tools, searches and strategies, and Galaxy workspace where users can privately analyse their own data. Forthcoming upgrades include cloud-ready application architecture, expanded support for the Galaxy workspace, tools for interrogating host-pathogen interactions, and improved interactions with affiliated databases (ClinEpiDB, MicrobiomeDB) and other scientific resources, and increased interoperability with the Bacterial & Viral BRC.


Assuntos
Bases de Dados Factuais , Vetores de Doenças/classificação , Interações Hospedeiro-Patógeno/genética , Fenótipo , Interface Usuário-Computador , Animais , Apicomplexa/classificação , Apicomplexa/genética , Apicomplexa/patogenicidade , Bactérias/classificação , Bactérias/genética , Bactérias/patogenicidade , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/patologia , Doenças Transmissíveis/transmissão , Biologia Computacional/métodos , Mineração de Dados/métodos , Diplomonadida/classificação , Diplomonadida/genética , Diplomonadida/patogenicidade , Fungos/classificação , Fungos/genética , Fungos/patogenicidade , Humanos , Insetos/classificação , Insetos/genética , Insetos/patogenicidade , Internet , Nematoides/classificação , Nematoides/genética , Nematoides/patogenicidade , Filogenia , Virulência , Fluxo de Trabalho
8.
PLoS Negl Trop Dis ; 15(11): e0009939, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34752454

RESUMO

Subspecies of the protozoan parasite Trypanosoma brucei are the causative agents of Human African Trypanosomiasis (HAT), a debilitating neglected tropical disease prevalent across sub-Saharan Africa. HAT case numbers have steadily decreased since the start of the century, and sustainable elimination of one form of the disease is in sight. However, key to this is the development of novel drugs to combat the disease. Acoziborole is a recently developed benzoxaborole, currently in advanced clinical trials, for treatment of stage 1 and stage 2 HAT. Importantly, acoziborole is orally bioavailable, and curative with one dose. Recent studies have made significant progress in determining the molecular mode of action of acoziborole. However, less is known about the potential mechanisms leading to acoziborole resistance in trypanosomes. In this study, an in vitro-derived acoziborole-resistant cell line was generated and characterised. The AcoR line exhibited significant cross-resistance with the methyltransferase inhibitor sinefungin as well as hypersensitisation to known trypanocides. Interestingly, transcriptomics analysis of AcoR cells indicated the parasites had obtained a procyclic- or stumpy-like transcriptome profile, with upregulation of procyclin surface proteins as well as differential regulation of key metabolic genes known to be expressed in a life cycle-specific manner, even in the absence of major morphological changes. However, no changes were observed in transcripts encoding CPSF3, the recently identified protein target of acoziborole. The results suggest that generation of resistance to this novel compound in vitro can be accompanied by transcriptomic switches resembling a procyclic- or stumpy-type phenotype.


Assuntos
Resistência a Medicamentos , Proteínas de Protozoários/genética , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo
9.
PLoS Pathog ; 17(7): e1009734, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310651

RESUMO

Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma congolense. In comparison to the well-studied T. brucei, there is a major paucity of knowledge regarding the biology of T. congolense. Here, we use a combination of omics technologies and novel genetic tools to characterise core metabolism in T. congolense mammalian-infective bloodstream-form parasites, and test whether metabolic differences compared to T. brucei impact upon sensitivity to metabolic inhibition. Like the bloodstream stage of T. brucei, glycolysis plays a major part in T. congolense energy metabolism. However, the rate of glucose uptake is significantly lower in bloodstream stage T. congolense, with cells remaining viable when cultured in concentrations as low as 2 mM. Instead of pyruvate, the primary glycolytic endpoints are succinate, malate and acetate. Transcriptomics analysis showed higher levels of transcripts associated with the mitochondrial pyruvate dehydrogenase complex, acetate generation, and the glycosomal succinate shunt in T. congolense, compared to T. brucei. Stable-isotope labelling of glucose enabled the comparison of carbon usage between T. brucei and T. congolense, highlighting differences in nucleotide and saturated fatty acid metabolism. To validate the metabolic similarities and differences, both species were treated with metabolic inhibitors, confirming that electron transport chain activity is not essential in T. congolense. However, the parasite exhibits increased sensitivity to inhibition of mitochondrial pyruvate import, compared to T. brucei. Strikingly, T. congolense exhibited significant resistance to inhibitors of fatty acid synthesis, including a 780-fold higher EC50 for the lipase and fatty acid synthase inhibitor Orlistat, compared to T. brucei. These data highlight that bloodstream form T. congolense diverges from T. brucei in key areas of metabolism, with several features that are intermediate between bloodstream- and insect-stage T. brucei. These results have implications for drug development, mechanisms of drug resistance and host-pathogen interactions.


Assuntos
Trypanosoma brucei brucei/metabolismo , Trypanosoma congolense/metabolismo , Animais , Reguladores do Metabolismo de Lipídeos/farmacologia , Camundongos , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos , Tripanossomíase Africana
10.
Elife ; 92020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32897188

RESUMO

DNA replication is needed to duplicate a cell's genome in S phase and segregate it during cell division. Previous work in Leishmania detected DNA replication initiation at just a single region in each chromosome, an organisation predicted to be insufficient for complete genome duplication within S phase. Here, we show that acetylated histone H3 (AcH3), base J and a kinetochore factor co-localise in each chromosome at only a single locus, which corresponds with previously mapped DNA replication initiation regions and is demarcated by localised G/T skew and G4 patterns. In addition, we describe previously undetected subtelomeric DNA replication in G2/M and G1-phase-enriched cells. Finally, we show that subtelomeric DNA replication, unlike chromosome-internal DNA replication, is sensitive to hydroxyurea and dependent on 9-1-1 activity. These findings indicate that Leishmania's genome duplication programme employs subtelomeric DNA replication initiation, possibly extending beyond S phase, to support predominantly chromosome-internal DNA replication initiation within S phase.


Assuntos
Estruturas Cromossômicas , Replicação do DNA/genética , Duplicação Gênica/genética , Genoma de Protozoário/genética , Leishmania major/genética , Estruturas Cromossômicas/química , Estruturas Cromossômicas/genética , Estruturas Cromossômicas/metabolismo , Cromossomos/química , Cromossomos/genética , Histonas/genética , Histonas/metabolismo , Fase S/genética
11.
PLoS Genet ; 16(7): e1008828, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609721

RESUMO

Homologous recombination (HR) has an intimate relationship with genome replication, both during repair of DNA lesions that might prevent DNA synthesis and in tackling stalls to the replication fork. Recent studies led us to ask if HR might have a more central role in replicating the genome of Leishmania, a eukaryotic parasite. Conflicting evidence has emerged regarding whether or not HR genes are essential, and genome-wide mapping has provided evidence for an unorthodox organisation of DNA replication initiation sites, termed origins. To answer this question, we have employed a combined CRISPR/Cas9 and DiCre approach to rapidly generate and assess the effect of conditional ablation of RAD51 and three RAD51-related proteins in Leishmania major. Using this approach, we demonstrate that loss of any of these HR factors is not immediately lethal but in each case growth slows with time and leads to DNA damage and accumulation of cells with aberrant DNA content. Despite these similarities, we show that only loss of RAD51 or RAD51-3 impairs DNA synthesis and causes elevated levels of genome-wide mutation. Furthermore, we show that these two HR factors act in distinct ways, since ablation of RAD51, but not RAD51-3, has a profound effect on DNA replication, causing loss of initiation at the major origins and increased DNA synthesis at subtelomeres. Our work clarifies questions regarding the importance of HR to survival of Leishmania and reveals an unanticipated, central role for RAD51 in the programme of genome replication in a microbial eukaryote.


Assuntos
Recombinação Homóloga/genética , Leishmania major/genética , Leishmaniose Cutânea/genética , Rad51 Recombinase/genética , Sistemas CRISPR-Cas/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Técnicas de Inativação de Genes , Genoma/genética , Humanos , Leishmania major/patogenicidade , Leishmaniose Cutânea/parasitologia
12.
Methods Mol Biol ; 2116: 225-262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32221924

RESUMO

Understanding the rate and patterns of genome variation is becoming ever more amenable to whole-genome analysis through advances in DNA sequencing, which may, at least in some circumstances, have supplanted more localized analyses by cellular and genetic approaches. Whole-genome analyses can utilize both short- and long-read sequence technologies. Here we describe how sequence generated by these approaches has been used in trypanosomatids to examine DNA replication dynamics, the accumulation of modified histone H2A due to genome damage, and evaluation of genome variation, focusing on ploidy change.


Assuntos
Genoma de Protozoário/genética , Instabilidade Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Leishmania major/genética , Análise de Sequência de DNA , Cromossomos/genética , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , DNA de Protozoário/genética , Conjuntos de Dados como Assunto , Histonas/genética , Parasitologia/métodos
13.
Cell Rep ; 30(3): 836-851.e5, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968257

RESUMO

Trypanosoma brucei evades mammalian immunity by using recombination to switch its surface-expressed variant surface glycoprotein (VSG), while ensuring that only one of many subtelomeric multigene VSG expression sites are transcribed at a time. DNA repair activities have been implicated in the catalysis of VSG switching by recombination, not transcriptional control. How VSG switching is signaled to guide the appropriate reaction or to integrate switching into parasite growth is unknown. Here, we show that the loss of ATR, a DNA damage-signaling protein kinase, is lethal, causing nuclear genome instability and increased VSG switching through VSG-localized damage. Furthermore, ATR loss leads to the increased transcription of silent VSG expression sites and expression of mixed VSGs on the cell surface, effects that are associated with the altered localization of RNA polymerase I and VEX1. This work shows that ATR acts in antigenic variation both through DNA damage signaling and surface antigen expression control.


Assuntos
Variação Antigênica , Antígenos de Superfície/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , RNA Polimerase I/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/enzimologia , Alelos , Núcleo Celular/patologia , Proliferação de Células , Sobrevivência Celular , Regulação da Expressão Gênica , Genoma , Modelos Biológicos , Transporte Proteico , Proteínas de Protozoários/metabolismo , Interferência de RNA , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética
14.
Science ; 365(6456)2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31467193

RESUMO

The requirement for next-generation antimalarials to be both curative and transmission-blocking necessitates the identification of previously undiscovered druggable molecular pathways. We identified a selective inhibitor of the Plasmodium falciparum protein kinase PfCLK3, which we used in combination with chemogenetics to validate PfCLK3 as a drug target acting at multiple parasite life stages. Consistent with a role for PfCLK3 in RNA splicing, inhibition resulted in the down-regulation of more than 400 essential parasite genes. Inhibition of PfCLK3 mediated rapid killing of asexual liver- and blood-stage P. falciparum and blockade of gametocyte development, thereby preventing transmission, and also showed parasiticidal activity against P. berghei and P. knowlesi Hence, our data establish PfCLK3 as a target for drugs, with the potential to offer a cure-to be prophylactic and transmission blocking in malaria.


Assuntos
Antimaláricos/farmacologia , Terapia de Alvo Molecular , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antimaláricos/uso terapêutico , Gametogênese/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas de Protozoários/genética , Splicing de RNA/genética , Bibliotecas de Moléculas Pequenas/farmacologia
15.
Nucleic Acids Res ; 47(17): 9180-9197, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350892

RESUMO

Ribonucleotides represent a threat to DNA genome stability and transmission. Two types of Ribonuclease H (RNase H) excise ribonucleotides when they form part of the DNA strand, or hydrolyse RNA when it base-pairs with DNA in structures termed R-loops. Loss of either RNase H is lethal in mammals, whereas yeast survives the absence of both enzymes. RNase H1 loss is tolerated by the parasite Trypanosoma brucei but no work has examined the function of RNase H2. Here we show that loss of T. brucei RNase H2 (TbRH2A) leads to growth and cell cycle arrest that is concomitant with accumulation of nuclear damage at sites of RNA polymerase (Pol) II transcription initiation, revealing a novel and critical role for RNase H2. Differential gene expression analysis reveals limited overall changes in RNA levels for RNA Pol II genes after TbRH2A loss, but increased perturbation of nucleotide metabolic genes. Finally, we show that TbRH2A loss causes R-loop and DNA damage accumulation in telomeric RNA Pol I transcription sites, also leading to altered gene expression. Thus, we demonstrate separation of function between two nuclear T. brucei RNase H enzymes during RNA Pol II transcription, but overlap in function during RNA Pol I-mediated gene expression during host immune evasion.


Assuntos
Antígenos de Protozoários/genética , Instabilidade Genômica/genética , Ribonuclease H/genética , Iniciação da Transcrição Genética , Animais , Antígenos de Protozoários/imunologia , DNA/química , DNA/genética , Dano ao DNA/genética , Replicação do DNA/genética , Regulação da Expressão Gênica/genética , Humanos , Conformação de Ácido Nucleico , RNA/química , RNA/genética , RNA Polimerase I/genética , RNA Polimerase II/genética , Ribonuclease H/química , Ribonuclease H/imunologia , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/imunologia , Trypanosoma brucei brucei/patogenicidade
16.
PLoS Genet ; 14(12): e1007729, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30543624

RESUMO

Switching of the Variant Surface Glycoprotein (VSG) in Trypanosoma brucei provides a crucial host immune evasion strategy that is catalysed both by transcription and recombination reactions, each operating within specialised telomeric VSG expression sites (ES). VSG switching is likely triggered by events focused on the single actively transcribed ES, from a repertoire of around 15, but the nature of such events is unclear. Here we show that RNA-DNA hybrids, called R-loops, form preferentially within sequences termed the 70 bp repeats in the actively transcribed ES, but spread throughout the active and inactive ES, in the absence of RNase H1, which degrades R-loops. Loss of RNase H1 also leads to increased levels of VSG coat switching and replication-associated genome damage, some of which accumulates within the active ES. This work indicates VSG ES architecture elicits R-loop formation, and that these RNA-DNA hybrids connect T. brucei immune evasion by transcription and recombination.


Assuntos
Evasão da Resposta Imune/genética , Ribonuclease H/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Animais , Variação Antigênica , Dano ao DNA , Genoma de Protozoário , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Ribonuclease H/deficiência , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/parasitologia
17.
Nucleic Acids Res ; 46(22): 11789-11805, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30304482

RESUMO

R-loops are stable RNA-DNA hybrids that have been implicated in transcription initiation and termination, as well as in telomere maintenance, chromatin formation, and genome replication and instability. RNA Polymerase (Pol) II transcription in the protozoan parasite Trypanosoma brucei is highly unusual: virtually all genes are co-transcribed from multigene transcription units, with mRNAs generated by linked trans-splicing and polyadenylation, and transcription initiation sites display no conserved promoter motifs. Here, we describe the genome-wide distribution of R-loops in wild type mammal-infective T. brucei and in mutants lacking RNase H1, revealing both conserved and diverged functions. Conserved localization was found at centromeres, rRNA genes and retrotransposon-associated genes. RNA Pol II transcription initiation sites also displayed R-loops, suggesting a broadly conserved role despite the lack of promoter conservation or transcription initiation regulation. However, the most abundant sites of R-loop enrichment were within the regions between coding sequences of the multigene transcription units, where the hybrids coincide with sites of polyadenylation and nucleosome-depletion. Thus, instead of functioning in transcription termination the most widespread localization of R-loops in T. brucei suggests a novel correlation with pre-mRNA processing. Finally, we find little evidence for correlation between R-loop localization and mapped sites of DNA replication initiation.


Assuntos
Genoma de Protozoário , Mutação , Trypanosoma brucei brucei/genética , Sítios de Ligação , Centrômero , Cromatina/química , Regulação da Expressão Gênica , Nucleossomos , Poliadenilação , Regiões Promotoras Genéticas , Domínios Proteicos , Proteínas de Protozoários/genética , RNA Polimerase II/metabolismo , RNA Ribossômico/química , Sítio de Iniciação de Transcrição , Transcrição Gênica , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
18.
EBioMedicine ; 36: 83-91, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30268832

RESUMO

BACKGROUND: Miltefosine has been used successfully to treat visceral leishmaniasis (VL) in India, but it was unsuccessful for VL in a clinical trial in Brazil. METHODS: To identify molecular markers that predict VL treatment failure whole genome sequencing of 26 L. infantum isolates, from cured and relapsed patients allowed a GWAS analysis of SNPs, gene and chromosome copy number variations. FINDINGS: A strong association was identified (p = 0·0005) between the presence of a genetically stable L. infantumMiltefosine Sensitivity Locus (MSL), and a positive response to miltefosine treatment. The risk of treatment failure increased 9·4-fold (95% CI 2·11-53·54) when an isolate did not have the MSL. The complete absence of the MSL predicted miltefosine failure with 0·92 (95% CI 0·65-0·996) sensitivity and 0·78 (95% CI 0·52-0·92) specificity. A genotyping survey of L. infantum (n = 157) showed that the frequency of MSL varies in a cline from 95% in North East Brazil to <5% in the South East. The MSL was found in the genomes of all L. infantum and L. donovani sequenced isolates from the Old World (n = 671), where miltefosine can have a cure rate higher than 93%. INTERPRETATION: Knowledge on the presence or absence of the MSL in L. infantum will allow stratification of patients prior to treatment, helping to establish better therapeutic strategies for VL treatment. FUND: CNPq, FAPES, GCRF MRC and Wellcome Trust.


Assuntos
Antiprotozoários/uso terapêutico , Marcadores Genéticos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Fosforilcolina/análogos & derivados , Antiprotozoários/farmacologia , Brasil , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Genoma de Protozoário , Genômica/métodos , Geografia , Humanos , Fosforilcolina/farmacologia , Fosforilcolina/uso terapêutico , Locos de Características Quantitativas , Falha de Tratamento , Resultado do Tratamento
19.
J Fungi (Basel) ; 4(1)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30152809

RESUMO

FungiDB (fungidb.org) is a free online resource for data mining and functional genomics analysis for fungal and oomycete species. FungiDB is part of the Eukaryotic Pathogen Genomics Database Resource (EuPathDB, eupathdb.org) platform that integrates genomic, transcriptomic, proteomic, and phenotypic datasets, and other types of data for pathogenic and nonpathogenic, free-living and parasitic organisms. FungiDB is one of the largest EuPathDB databases containing nearly 100 genomes obtained from GenBank, Aspergillus Genome Database (AspGD), The Broad Institute, Joint Genome Institute (JGI), Ensembl, and other sources. FungiDB offers a user-friendly web interface with embedded bioinformatics tools that support custom in silico experiments that leverage FungiDB-integrated data. In addition, a Galaxy-based workspace enables users to generate custom pipelines for large-scale data analysis (e.g., RNA-Seq, variant calling, etc.). This review provides an introduction to the FungiDB resources and focuses on available features, tools, and queries and how they can be used to mine data across a diverse range of integrated FungiDB datasets and records.

20.
Methods Mol Biol ; 1757: 69-113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761457

RESUMO

Fighting infections and developing novel drugs and vaccines requires advanced knowledge of pathogen's biology. Readily accessible genomic, functional genomic, and population data aids biological and translational discovery. The Eukaryotic Pathogen Database Resources ( http://eupathdb.org ) are data mining resources that support hypothesis driven research by facilitating the discovery of meaningful biological relationships from large volumes of data. The resource encompasses 13 sites that support over 170 species including pathogenic protists, oomycetes, and fungi as well as evolutionarily related nonpathogenic species. EuPathDB integrates preanalyzed data with advanced search capabilities, data visualization, analysis tools and a comprehensive record system in a graphical interface that does not require prior computational skills. This chapter describes guiding concepts common across EuPathDB sites and illustrates the powerful data mining capabilities of some of the available tools and features.


Assuntos
Bases de Dados Genéticas , Genômica , Parasitos/genética , Animais , Biologia Computacional/métodos , Mineração de Dados , Células Eucarióticas , Genoma de Protozoário , Genômica/métodos , Redes e Vias Metabólicas , Parasitos/metabolismo , Proteômica/métodos , Software , Transcriptoma , Interface Usuário-Computador , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...